A Compact Ionic Polymer Metal Composite (IPMC) System with Inductive Sensor for Closed Loop Feedback

نویسندگان

  • Jiaqi Wang
  • Andrew McDaid
  • Rajnish Sharma
  • Delbert Tesar
چکیده

Ionic polymer metal composite (IPMC), of which a low actuating voltage (<5 V), high power efficiency and biocompatibility makes it a proven candidate for low power devices. However, due to its inherent nonlinear behaviour and time-variance, feedback control, as well as reliable sensing means, are required for accurate operations. This paper presents an IPMC actuator implemented with an inductive sensor to enhance the reliability and compactness of the overall device. A practical, low cost and importantly, compact inductive sensor fabricated on a printed circuit board (PCB) is proposed here. Target material selections and coil design considerations are discussed. It is experimentally determined that the inductive sensor has comparable performance to a laser sensor. Based on a proportional-integral-derivative (PID) control results the inductive sensor has demonstrated to be an alternative to a laser sensor allowing devices using IPMC actuators to be compact.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrated IPMC/PVDF sensory actuator and its validation in feedback control

Position and/or force feedback is critical in ensuring precise and safe operation of ionic polymer–metal composite (IPMC) actuators in io/micromanipulation. In this paper the design of an integrated sensory actuator is presented, where polyvinylidene fluoride (PVDF) films re used to provide simultaneous feedback of bending and force outputs of the IPMC actuator. The design adopts differential c...

متن کامل

Precision force and position control of ionic polymer–metal composite

In this paper, model-based precision force and position control of an ionic polymer metal composite (IPMC) is presented. A 23.8 mm×3.4 mm×0.16 mm IPMC strip was used as an actuator in a cantilever configuration. Open-loop force and position responses of an IPMC are not repeatable, and hence closed-loop precision control is of critical importance to ensure proper functioning, repeatability and r...

متن کامل

System identification and microposition control of ionic polymer metal composite for three-finger gripper manipulation

Smart materials have been widely used for control actuation. A robotic hand can be equipped with artificial tendons and sensors for the operation of its various joints, mimicking human hand motions. The motors in the robotic hand could be replaced with novel electroactive polymer (EAP) actuators. In the three-finger gripper proposed in this paper, each finger can be actuated individually so tha...

متن کامل

IONIC POLYMER-METAL COMPOSITE ARTIFICIAL MUSCLES AND SENSORS: A CONTROL SYSTEMS PERSPECTIVE By

IONIC POLYMER-METAL COMPOSITE ARTIFICIAL MUSCLES AND SENSORS: A CONTROL SYSTEMS PERSPECTIVE By Zheng Chen Ionic polymer metal composites (IPMCs) form an important category of electroactive polymers (EAPs), also known as artificial muscles. IPMCs have many potential applications in robotics, biomedical devices, and micro/nano manipulation systems. In this dissertation, a systems perspective is t...

متن کامل

Integrated sensing for ionic polymer–metal composite actuators using PVDF thin films

Abstract Compact sensing methods are desirable for ionic polymer–metal composite (IPMC) actuators in microrobotic and biomedical applications. In this paper a novel sensing scheme for IPMC actuators is proposed by bonding an IPMC and a PVDF (polyvinylidene fluoride) thin film with an insulating layer in between. The insulating layer thickness is properly designed to minimize the stiffness of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015